关于我们

在线客服

帮助

24小时客服:010-82326699 400-810-5999

建设工程教育网 > 建筑文苑 > 交通工程 > 正文

对悬索桥总体设计思路的探讨

2012-08-07 15:26    【  【打印】【我要纠错】

  摘要:悬索桥是特大跨径桥梁的主要形式之一,可以说是跨千米以上桥梁的唯一桥型(从目前已建成桥栗来看说是唯一桥型)。近年来,我国陆续修建了数座大跨度悬索桥。但国内目前尚无对此类桥使用和养护维修方面的规范。本文针对悬索桥作了简要的介绍,同时还对悬索桥悬吊系统的检查和养护维修方法也给予了一定的探讨。

  我国很早就开始修建悬索桥,究其跨径和规模远不能同现代悬索桥相比。到了20世纪90年代初,我国才开始建造大跨悬索桥,例如:广东汕头海湾大桥,主跨452m,加劲梁采用混凝土箱梁,广东虎门大桥,主桥跨径888m,钢箱悬索桥,正在建设的钢箱悬索桥——江阴长江大桥,主跨1385m.由此可见,现代悬索桥在我国已具有相当规模和水平,巳进人世界悬索桥的先进行列。

  一、悬索桥的发展现状

  悬索桥是特大跨径桥梁的主要形式之一,可以说是跨千米以上桥梁的唯一桥型(从目前已建成桥梁来看说是唯一桥型)。但从发展趋势上看,斜拉桥具有明显优势。但根据地形,地质条件,若能采用隧道式锚碇,悬索桥在千米以内,也可以同斜拉桥竞争。根据理论分析,就目前的建材水平,悬索桥的最大跨径可达到3500m左右。已建成的日本明石海峡大桥,主跨已达1990m.正在计划中的意大利墨西拿海峡大桥,设计方案之一是悬索桥,其主跨3500m.当然还有规划中更大跨径的悬索桥。

  悬索桥跨径增大,如上所述当跨径达3500m时,动力问题将是一个突出的矛盾,所以,对特大跨桥梁,已提出用悬索桥和斜拉桥相结合的“吊拉式”桥型。在国外这种桥型目前还停留在研究之中,并未诸实施。然而,在我国贵州省乌江1997年底建成了一座用预应力钢纤维混凝土薄壁箱梁作为加劲梁的吊拉组合桥,把桥梁工作者多年梦寐追求的桥型付诸实现,这是贵州桥梁工作者的大胆尝试,对推动我国乃至世界桥梁建设都有巨大作用。乌江吊拉组合桥,经过近两年运行和测试,结构性能良好,特别是两种桥型交接部位的处理,较为合理。

  二、悬索桥的总体设计

  悬索桥适用于大跨度的桥梁结构。桥面是由钢缆和吊索来承受,作为桥面主要结构物的加劲梁的跨度相当于吊索的间距。成为一个小跨度的弹性支承连续梁,所以主跨的大小与加劲梁刚度没有很直接的关系。而作为承受桥面的关键构件的铜缆是由塔支承着并由强大的锚碇锚固着,只有塔和锚碇的稳定才能使钢缆来承受桥面上的各种荷载。因此,悬索桥在适合的地形、水文和地质条件下都可以建造,只是造价比较高。往往适用于其他桥型难以适用的特大跨径桥梁。以目前来说,当主跨超过700m的桥,几乎都是悬索桥。而小于700mm的跨径中,悬索桥和斜拉桥还是有很大的竞争力,有好的地质条件,锚往往比较轻易建造。

  桥梁总体设计是一个很复杂的问题,首先要适应地形、水文、地质等自然条件的限制,也要符合桥面交通和通航的使用要求。本文主要以50年代以后建的悬索桥进行分析,因为它们充分吸取Tacorna大桥被风吹毁的教训,以下讨论的参数仅仅是一般情况的参考值,对于有非凡条件和非凡要求不必苛求。

  1、跨度比

  跨度比是指边孔跨度与主孔跨度的比值。其中对单跨悬索桥而言边孔跨度可视为主塔至锚碇散索鞍处的距离,跨度比受具体桥位处的地形与地质条件制约,每座桥都不同。如三跨悬素桥的跨度比就比单跨悬索桥的大一些,这是为了减少边孔的水中墩并减少主孔跨径。

  由以上两表看来,三跨悬索桥跨度比一般在0.25~0.4之间,但世界上最大的悬索桥——明石海峡大桥在0.51.单跨悬索桥跨度比一般在0.2~0.3之间。为了使在恒载条件下,主缆在塔两侧的水平力相等,要求主缆与塔两侧的倾角相等,单跨的悬素桥的边跨主缆是直拉式,因此,一般情况单跨的边主跨比应该比三跨悬素桥小,单跨的边跨跨径与散索鞍位置还有很大的关系。

  从结构特性方面来考虑,假设主孔的跨度以及垂跨比等皆为定值,在用钢塔时悬索桥单位桥长所需的钢材重量随跨度比减小而增大;当用钢筋混凝土塔时,跨度比减少增加的延米用钢量很小,当跨度比由0.5~0.3时,增加用钢量约5%,跨度越大时,增加钢用量的百分比越小。

  2、垂跨比

  悬索桥的垂跨比是指主缆在主孔内的垂度和主孔跨度的比值,垂跨比的大小对主缆中的拉力有很大的影响,因此它在较大程度上影响着主缆的用钢量、结构整体刚度、主孔竖向和横向的挠度。垂跨比与主缆中的拉力和塔承受的压力呈反比。垂跨比与塔的高度也有直接影响,它们呈正比关系。垂跨比越大,悬索桥竖向挠度和横向挠度都加大。一般都在1/10~1/11之间,铁路桥更小一些。

  悬索桥的主缆垂跨比除了对结构整体刚度有影响以外,它对结构振动特性也有一定的影响。悬索桥的竖向弯曲固有频率∞b将随垂跨比的加大而减低;悬索桥的扭转固有频率;将随垂跨比的加大而增高;悬索桥扭转与坚弯固有频率比也将随垂跨比的加大而有显著的增大;悬索桥的极惯距将随垂跨比的加大而减小。

  3、宽跨比

  宽跨比是指桥梁上部结构的梁度与主孔跨度的比值,对于一般桥型的中小跨度而言,可控制在大于1/30左右,有足够的横向刚度。由于桥梁宽度一般由交通要求确定的,对于特大跨度桥梁就很难保证这个要求了。在统计的悬索桥资料中1000m以上跨径的宽跨比都小于1/30,甚至达1/60,虽然有些桥梁为了增加抗风稳定性,在风嘴外侧再增加挑板或在中心分隔加宽并透风。从表面上来看是加了粱宽,但实际是改善气流条件,增加抗风稳定性而不是为了增加横向刚度的。

  4、加劲粱的高宽比与高跨比

  加劲梁的梁高和粱宽之比与梁高与主孔跨度之比是密切相关的两个指标,由于加劲梁的受力状态是多跨弹性支承连续梁,看来梁高和主孔跨径不是那么密切,但是从风动稳定性来看,还要考虑加劲梁要有足够的抗扭刚度,以反抗涡激共振的发生。

  在过去不需要双层交通时,也有用箱梁和板粱断面。非凡是Tacoma桥由于采用版梁断面,流线型很差,在不大的风速下被风吹得扭曲失稳而破坏。实际上高宽比和高跨比是存在一定的矛盾的。在桥面宽度确定以后,梁高小一些,断面的流线型可以好一些,有利于风动稳定,但高度太小会导致加劲粱的抗扭刚度削弱太多,轻易导致涡振和抖振的发生产生结构疲惫,人感不适及行车不安垒。为此还要控制高跨比。在设计中初选加劲梁断面方案后,对于特大桥应做风洞的节段模型试验,修改断面、测定各种参数进行抗风验算和各类风振分析。非凡要注重风向带有一定攻角时,加劲粱断面的流线型“钝化”,风动稳定性要差一些。对于特大跨度的桥或高风速地区的桥梁,采用如同墨西拿海峡大桥方案,做成左右两个能适应风流线型的桥面系,利用宽的中心分隔带透风解决风动稳定。

  5、加劲染的支承体系

  加劲梁的支承体系主要有主跨单孔简支,主边跨三孔连续或三跨双铰以及两跨简支或连续。三跨连续能减小桥面变形,包括支座处的转角、伸缩量和跨中挠度,但结构较复杂,多用于铁路桥梁中。但是边跨采用钢加劲梁,边跨的造价大约是预应力混凝土连续梁的两倍,所以国内公路悬索桥边跨多用预应力混凝土连续粱。

  为了进一步减少跨中挠度和加劲粱伸缩量,1959年法国Tancarville桥首创采用主跨叫点将主缆和加劲梁直接固结的方法。相当于增加一个半刚性的支承点,使用这种方法使该桥可以减少非对称荷载作用下的挠度值,提高纵向位移的复原力。减少正常情况下活载引起的振动以及风荷载和地震荷载引起的纵向变位量。以后的丹麦大海带桥,瑞典高海岸桥,东京湾彩虹桥等也都采用了主缆和加劲梁在跨中直接固结的方法,他们有的是用大夹具来箍结,也有的用短斜索和端斜索来固结,都起着相同的作用。

责任编辑:zoe
收藏分享:论坛
分享到:
相关新闻
  • 特色班
    4大班次+2-3套全真模拟题
    提升学习效果
  • 精品班
    4大班次+2-3套全真模拟题+1套预测试题
  • 实验班
    3套全真模拟题+2套预测试题+考前冲关宝典
  • 定制班
    3套模拟题+3套预测题+考前冲关宝典+考前重点
  • 移动班
    以知识点为单元授课练习,
    强化重点、难点、考点
版权声明

  1、凡本网注明“来源:建设工程教育网”的所有作品,版权均属建设工程教育网所有,未经本网授权不得转载、链接、转贴或以其他方式使用;已经本网授权的,应在授权范围内使用,且必须注明“来源:建设工程教育网”。违反上述声明者,本网将追究其法律责任。
  2、本网部分资料为网上搜集转载,均尽力标明作者和出处。对于本网刊载作品涉及版权等问题的,请作者与本网站联系,本网站核实确认后会尽快予以处理。
  本网转载之作品,并不意味着认同该作品的观点或真实性。如其他媒体、网站或个人转载使用,请与著作权人联系,并自负法律责任。
  3、本网站欢迎积极投稿。