2010-04-09 08:38 【大 中 小】【打印】【我要纠错】
摘要:无论是已建工程的加固、修补还是工程新建中,经常遇到在已硬化的混凝土上或已凿除劣化、酥松部分露出坚实的混凝土基层上浇筑新混凝土或砂浆的问题。新旧混凝土的结合面是一个薄弱环节,其界面粘结强度一般都低于整浇混凝土的强度,极大地影响了结构的可靠性,对其受力进行分析有着重要意义。
人们对新旧混凝土结合面的粘结强度达不到相应整浇混凝土的强度的原因还不十分清楚,需要探索。显然,对于新旧混凝土粘结问题的根本解决需要从混凝土材料微观结构的角度阐明其粘结机理,建立微观结构的分析和宏观力学性能之间的联系,将有助于我们从本质上认识新旧混凝土粘结问题,从而找到解决问题的途径。
一、界面过渡区的组成界面区中主要存在有C-S-H凝胶(水化硅酸钙)、C-H晶体Ca(OH)2、AFt(钙矾石)和未水化的熟料颗粒及孔洞、裂缝。界面区中C-H晶体数量多而且晶体尺寸较大,同时界面区中孔洞较多时,对界面粘结将产生不利影响。
二、界面过渡区形成机理在混凝土拌和过程中,在骨料表面形成一层几个微米厚的水膜,而无水水泥的分布密度在紧贴骨料处几乎为零,然后随着距离增大而增高。所以在这层水膜中可以认为基本上不存在水泥颗粒。当水泥化合物溶解于水之后,溶解的离子即扩散进入这层水膜。如果是不溶性骨料,水膜中的离子全部来自水泥熟料及石膏。但如骨料是部分可溶性的,则骨料所溶出的离子在骨料表面密度最大。由于骨料总会有部分离子析出,在靠近骨料表面处浓度最高,以后有一明显缺陷处,即低离子浓度区。因此,在这层水膜内,最先形成水化产物晶核的是先扩散进入水膜的离子,对普通硅酸盐水泥即是钙矾石和氢氧钙石。
水膜内水化产物晶体是在溶液中形成晶核而长大,由于膜内过饱和度不高,有充分空间让晶体生长,故形成的水化产物晶体尺寸较大,所形成的网状结构较为疏松,以后活动性较差的铝离子、硅离子陆续进入第一批晶体所遗留的空隙中,逐渐形成C-S-H以及尺寸较小的次生钙矾石和氢氧钙石填充其间。马索上述假设中离子浓度分布曲线凹陷处可能形成大晶核及高孔隙率,是界面中的薄弱区。
界面过渡区强度低,容易引发裂缝,并且裂缝易于传播,从而使界面过渡区成为最薄弱的环节。由于界面过渡区的显著结构是C-H晶体富集并产生取向性,晶体平均尺寸较大,孔隙尺寸和孔隙率均较大,即界面存在着大量有缺陷的疏松的网络结构。虽然决定界面性质的因素很多,但C—H的取向和富集形成薄弱层界面是主要物理化学原因之一,它间接反映了界面层的孔结构和致密性。所以要增强界面区尤其是强化最薄弱层,消除和减小界面层与基体间的差异,必须减少C-H含量,打乱其取向性,降低孔隙率。
三、新旧混凝土结合面薄弱的原因在同样的受力条件下,新旧混凝土的结合面比整浇体系中骨料与水泥石界面还要薄弱,有以下几方面原因:
(1)新旧混凝土接触界面存在一个类似于整浇混凝土中骨料与水泥石之间的界面过渡区,而这个过渡区本来就是一个薄弱环节。由于旧混凝土的亲水性,修补时会在旧混凝土表面形成水膜,使结合面处新混凝土的局部水灰比高于体系中的水灰比,导致界面钙矾石和氢氧化钙晶体数量增多,形态变大,形成择优取向,降低界面强度。且由于旧混凝土的阻碍,新混凝土中的泌水和气泡积聚在旧混凝土表面,不仅使得新混凝土局部水灰比更高,而且使得气孔和微裂缝在该区富集,显著降低界面强度。这是物质结构化学方面的原因,是影响新旧混凝土结合本质的内因。
(2)界面处露出的石子、水泥石和新混凝土的界面接触与整浇混凝土中骨料与水泥浆的界面接触有差别。我们知道,水泥浆本身具有一定的粘结性,它主要用于包裹混凝土中的骨料,使之硬化成坚硬的水泥石。在新混凝土中的骨料经过充分搅拌、振捣被水泥浆包裹,而新旧混凝土界面处新混凝土中的骨料经过振捣可能挤压在界面处,是使骨料与界面突出的石子、水泥石形成“点接触”,骨料堆积在旧混凝土表面,阻塞了一部分旧混凝土表面的孔隙和凹凸不平部分,使具有粘结性的水泥浆不能完全渗入孔隙中去,形成“缺浆”现象,界面处水泥浆不能充分浸润骨料和水泥石,而新混凝土失去一部分水泥浆,这样使得粘结界面处的新混凝土中出现空隙,影响了新旧混凝土的粘结强度。
(3)整浇混凝土中骨料体积小、多棱角、骨料表面粗糙,使水泥石可嵌固在骨料表面的凹坑中,机械咬合对宏观粘结强度起主要作用。从微观上看,它增加了有效的真实接触面积,粘结力也会大大增加。修补材料与旧混凝土之间存在物理化学性质差异,由于冷热交替、冻融循环作用及新混凝土的收缩而在结合面处引起附加应力,诱发“先天”裂缝。从受力的角度看,在整浇混凝土中骨料体积小、多棱角、骨料表面粗糙,并且被水泥石分开,分布较“均匀”而不象新旧混凝土界面处相对集中,裂缝、缺陷产生的概率较大,再加上界面比较“平坦”不能使裂缝扩散“路径”曲折,消耗能量,所以一旦从这一区域引发了裂缝,裂缝尖端处应力集中,就会导致裂缝迅速开展和传播,新旧混凝土界面承载能力会进一步被削弱,最后导致界面处首先破坏,即破坏总是从最薄弱环节开始。
综上所述,可以得到启示:如果我们能象加强整浇体系中骨料和水泥石界面一样加强新旧混凝土的界面,也许是解决新旧混凝土粘结问题的一个途径。
1、凡本网注明“来源:建设工程教育网”的所有作品,版权均属建设工程教育网所有,未经本网授权不得转载、链接、转贴或以其他方式使用;已经本网授权的,应在授权范围内使用,且必须注明“来源:建设工程教育网”。违反上述声明者,本网将追究其法律责任。
2、本网部分资料为网上搜集转载,均尽力标明作者和出处。对于本网刊载作品涉及版权等问题的,请作者与本网站联系,本网站核实确认后会尽快予以处理。
本网转载之作品,并不意味着认同该作品的观点或真实性。如其他媒体、网站或个人转载使用,请与著作权人联系,并自负法律责任。
3、本网站欢迎积极投稿。